Un estudio refleja que los modelos de lenguaje tecnológicos pueden entrenarse para mostrar un comportamiento engañoso

16 de enero de 2024
1 minuto de lectura
estudio
Representación de la inteligencia artificial. | Fuente: EP

Al igual que los humanos adaptan sus motivaciones para alinearse con el fin que persiguen ante una audiencia determinada, la inteligencia artificial presenta unas «presiones de selección» parecidas

Un estudio de la empresa de inteligencia artificial (IA) Anthropic refleja que los modelos de lenguaje tecnológicos pueden entrenarse para mostrar un comportamiento engañoso. De la misma manera que los humanos adaptan u ocultan sus motivaciones para alinearse con el fin que persiguen ante una audiencia determinada, la IA presenta unas «presiones de selección» similares.

Los grandes modelos de lenguaje pueden entrenarse para ofrecer a los usuarios respuestas engañosas. Además, estas persisten pese a posteriores intentos de depurar o corregir la información que ofrecen.

Los investigadores de Anthropic utilizaron ejemplos con técnicas seguras de entrenamiento para eliminar los comportamientos engañosos. Pero descubrieron que este método solo puede eliminar «el comportamiento inseguro que es visible durante el entrenamiento y la evaluación». En realidad, se salta los modelos con una alineación engañosa instrumental que parecen ser seguros durante el entrenamiento.

Por tanto, dicho comportamiento engañoso se vuelve persistente. De hecho, los investigadores concluyen que cuando esto ocurre, las técnicas estándar pueden fallar al eliminar dicho engaño y crear una falsa impresión de seguridad.

«Esto podría poner en entredicho cualquier enfoque que se base en provocar y luego desincentivar el comportamiento engañoso», aseguran los autores de Anthropic. Aunque también afirman que no les preocupa la probabilidad de que los modelos que muestran estos comportamientos engañosos «surjan de forma natural». 

En este contexto recomiendan recurrir al entrenamiento adversario para enseñar a los modelos a reconocer mejor los desencadenantes de su comportamiento engañoso para que lo oculten.

«Podemos entrenar modelos solapados que producen un razonamiento consistente y coherente en relación con su puerta trasera y encontrar que dichos modelos muestran un incremento de su robustez ante técnicas seguras de ajuste. Incluso cuando el razonamiento se destila», explican los autores del estudio.

Responder

Your email address will not be published.

No olvides...

Un informe revela que el 95% de los gatos y el 70% de los perros recogidos carecen de microchip

Un informe oficial revela fallos graves en la gestión de animales abandonados en España: uno de cada cuatro ayuntamientos carece…

Miley Cyrus presenta ‘Something Beautiful’ en un concierto exclusivo en Los Ángeles

La cantante ofreció un show íntimo en el Chateau Marmont para adelantar su álbum más personal y experimental…

Arrestan a joven india por estafar a 25 hombres tras casarse con ellos en solo siete meses

Los investigadores sospechan que Anuradha Paswan no actuaba sola y podría estar vinculada a una red criminal más amplia dedicada…

El Papa León XIV llama a construir instituciones de paz en todos los ámbitos de la sociedad

El Pontífice anima a recuperar la paciencia y a actuar desde las comunidades locales como base para una paz verdadera…